
Conformal Field Theory and Gravity
Solutions to Problem Set 13 Fall 2024

1. Hawking-Page in Three Dimensions

(a) The Euclidean BTZ black hole with the identification tE ∼ tE + β has the metric,
stated in the exercise set,

ds2 = `2
[(
r2 − 8M

)
dt2E +

dr2

r2 − 8M
+ r2dφ2

]
. (1)

Because of the identifications φ ∼ φ+2π` and tE ∼ tE +β, this can be understood,
for a given and fixed r, as a torus. When r →

√
8M , the thermal circle shrinks to

0 whereas the φ circle remains finite in size. Thus, we interpret this manifold as a
filled in torus, where it is the thermal circle which is filled in.
The thermal AdS3 with identification tE ∼ tE + β and φ ∼ φ+ 2π` has the metric

ds2 =

(
1 +

r2

`2

)
dt2E +

dr2

1 + r2/`2
+ r2dφ2 (2)

Again, we interpret it as a torus, but this time as r → 0, it is the φ circle which
shrinks while the thermal circle remains finite in size. Both manifolds are depicted
in the following figure:

To compute the on-shell action of the thermal AdS manifold, we first rescale to
make tE have the same periodicity as BTZ, so that we can use its on-shell action.
This means rescaling (tE, φ) → 2π`

β
(tE, φ), so that the filled in circle has periodicity

2π` · 2π`
β

, obtaining

Son−shell
(th) = Son−shell

(bh) |
β→ 4π2`2

β

= − βc

12`
(3)
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(b) We are interested in the limit where GN → 0 (`p → ∞, MP → 0), meaning c → ∞.
In this limit, the partition function reduces to Z = e−Son−shell

min where

Son−shell
min = min(Son−shell

(th) , Son−shell
(bh) ) (4)

At small temperature T � 1 (β � 1), the minimum is given by thermal AdS,
whereas at high temperatures, it is given by BTZ. The transition takes place at

Son−shell
(th) = Son−shell

(bh) =⇒ T = T ∗ =
1

2π`
(5)

We can thus write compactly

Son−shell
min = − c

12`T
Θ(T ∗ − T )− π2`cT

3
Θ(T − T ∗) (6)

where Θ is the Heaviside function. Thus,

F = −T logZ = TSon−shell
min = − c

12`
Θ(T ∗ − T )− π2`cT 2

3
Θ(T − T ∗) (7)

which can be plotted as (here I’m plotting F/c with ` = 1):
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Note that since ∂F/∂T is discontinuous, the transition at T = T ∗ is a first order
phase transition.

(c) The entropy is calculated from the partition function thanks to

S =
∂

∂T
(T logZ) = − ∂

∂T
(TSon−shell

min ) =
2π2`c

3
T Θ(T − T ∗) (8)

(note that the entropy vanishes for thermal AdS, as expected).

(d) To compute the mean energy in the canonical ensemble, use

E(β) = − ∂

∂β
logZ =

∂

∂β
Smin = − c

12`
Θ(T ∗ − T ) +

π2`cT 2

3
Θ(T − T ∗) (9)

The first term corresponds to the Casimir energy in the CFT (in this sense, thermal
AdS corresponds to the CFT vacuum), whereas the second term gives the spacetime
energy M(T ), using the relation between M and T derived in Problem set 11.
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(e) Inverting this relation, we obtain (for large T and large E where T > T ∗)

1/T = β =

√
π2c`

3E
(10)

and thus,

S(E) =
2π2`c

3
β = 2π

√
cE`

3
(11)

(f) This gives precisely the Cardy formula, which predicts the exponentially growing
density of states ρ(E) = eS(E) that we obtained in a previous exercise set.

3



2. Small and large black holes in general d

(a) We may determine the temperature of the black hole by relating it to the horizon
radius rh, which is given by the larger root of f(rh) = 0, i.e.,

1− µ

rd−2
h

+
r2h
L2

= 0. (12)

Since the metric near the horizon at r ≈ rh reads

ds2 = f ′(rh)(r − rh)dτ
2 +

1

f ′(rh)(r − rh)
dr2 + r2hdΩ

2
d−1, (13)

the temperature of the black hole is given by (recall problem set 4)

T =
|f ′(rh)|
4π

=
dr2h + (d− 2)L2

4πL2rh
. (14)

On the other hand, the associated temperature of thermal AdS is given by the inverse
of the compactified Euclidean time direction. This difference originates from the
different topology of the solutions: for black holes, the thermal circle is contractible,
while for thermal AdS it is not.

(b) Solving for rh(T ), we find two solutions

r±h =
2πL2T

d

(
1±

√
1− d(d− 2)

4π2L2T 2

)
(15)

and we get T = Tmin when the discriminant is 0. We see that there is no black hole
solution when T < Tmin. Nonetheless, thermal AdS remains a solution (it satisfies
Einstein’s equations with a negative cosmological constant for every T ).

(c) The two solutions have been previously found

r±h =
2πL2T

d

(
1±

√
1− d(d− 2)

4π2L2T 2

)
(16)

(d) Consider the bare gravitational action in D = d+1 dimensions in Eucliean signature

Sbulk + SGHY =
1

2κ2

∫
M

dDx
√
g (R− 2Λ) +

1

κ2

∫
∂M

ddx
√
γK (17)

where M is the spacetime bulk and ∂M is the asymptotic AdS boundary, and we
introduced Λ = − (D−1)(D−2)

2L2 . Note that since we will only consider differences in
actions, we need not renormalise the expression above.
A solution of Einstein’s equation satisfies R = 2D

D−2
Λ, and thus we can substitute

this to find

Sbulk =
1

2κ2

∫
dDx

√
g (R− 2Λ) =

1

2κ2

4Λ

D − 2

∫
dDx

√
g (18)
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Therefore

∆Sbulk = −(D − 1)

κ2L2
(VolBH − VolAdS)

= −(D − 1)

κ2L2
βVol(Sd−1) lim

r→∞

(∫ r

rh

dr′r′d−1 −
∫ r

0

dr′r′d−1

)
=

(D − 1)

κ2L2
βVol(Sd−1)

rdh
d

=
rdh

κ2L2
βVol(Sd−1)

(19)

Now let us consider the relevant quantities to compute the boundary action. The
normal vector to the boundary at a distance r is n = f 1/2∂r, the metric determinant
is √γ = f 1/2rd−1, and the extrinsic curvature density is given by K = 1

2
γµνLnγµν =

1
2
f 1/2∂rf + . . . where the dots indicate terms that vanish when we do the angular

integrals.
At large radii, r � L, we have

√
γBH =

√
γAdS − µL

2
(20)

KBH = KAdS + (d− 1)
µL

2rdh
(21)

where √
γ
AdS

≈ rd

L
and KAdS ≈ 1/L. Now we can determine the difference in

boundary actions

∆SGHY =
βVol(Sd−1)

κ2
lim
r→∞

(
√
γAdS(d− 1)

µL

2rdh
−KAdS

µL

2

)
=

(d− 2)βVol(Sd−1)

2κ2
µ =

(d− 2)βVol(Sd−1)

2κ2L2

(
rd−2
h L2 + rdh

) (22)

where we found µ from (12). hence the action is proportional to the volume of
spacetime. This is infinite, due to the infinite range of r, but the difference between
the volumes of two asymptotically AdS geometries is a finite quantity, which we can
compute as

∆F =
rd−2
h

2κ2
Vol(Sd−1)

(
1− r2h

L2

)
. (23)

(e) For rh < L, the difference ∆F of the free energies is positive, and therefore thermal
AdS is preferred. For rh > L, the Schwarzschild black hole is preferred. For rh = L,
there is a phase transition, the Hawking–Page phase transition, with transition
temperature

THP =
1

2πL
(d− 1).

Small black holes have rh < L, hence their free energy is always greater than thermal
AdS, and such configurations never dominate the partition function.

(f) The specific heat can be related to the free energy by

C = T
d2F

dT 2
(24)

To conclude, we see that large black holes are stable, while small ones decay into
thermal AdS for T ≤ d−1

2πL
and into large black holes for T > d−1

2πL
.
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(g) As we take L → ∞, we recover the flat space limit, where THP = 0, hence no phase
transition occurs, and the partition function is always dominated by the black hole
solution, of which there is now a single one, with free energy F =

rd−2
h

2κ2 Vol(Sd−1).
This is always positive and therefore black holes will tend to decay to the empty
flat space solution, with F = 0.
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