Conformal Field Theory and Gravity

Solutions to Problem Set 13 Fall 2024

1. Hawking-Page in Three Dimensions

(a) The Euclidean BTZ black hole with the identification tg ~ tg +  has the metric,
stated in the exercise set,
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Because of the identifications ¢ ~ ¢ + 27 and tg ~ tg + (3, this can be understood,
for a given and fixed r, as a torus. When r — v/8M, the thermal circle shrinks to
0 whereas the ¢ circle remains finite in size. Thus, we interpret this manifold as a
filled in torus, where it is the thermal circle which is filled in.

The thermal AdS3 with identification tg ~ tg + § and ¢ ~ ¢ + 27 has the metric

2 r? 2 dr® 2 7.2
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Again, we interpret it as a torus, but this time as r — 0, it is the ¢ circle which
shrinks while the thermal circle remains finite in size. Both manifolds are depicted
in the following figure:
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To compute the on-shell action of the thermal AdS manifold, we first rescale to
make tg have the same periodicity as BTZ, so that we can use its on-shell action.
This means rescaling (tg, ¢) — QT’gg(t £, ®), so that the filled in circle has periodicity
2nl - 27”6, obtaining
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b) We are interested in the limit where Gy — 0 (£, — oo, Mp — 0), meaning ¢ — oo.
( » , g

In this limit, the partition function reduces to Z = e Sgﬁn " Where
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At small temperature 7" < 1 (8 > 1), the minimum is given by thermal AdS,
whereas at high temperatures, it is given by BTZ. The transition takes place at
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We can thus write compactly
20cT
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where © is the Heaviside function. Thus,
c w2 cT?

F=-TlogZ = TSgm " =

—er-1) (1)

which can be plotted as (here I'm plotting F'/c with ¢ = 1):
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Note that since F /0T is discontinuous, the transition at 7' = T™ is a first order
phase transition.

The entropy is calculated from the partition function thanks to
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(note that the entropy vanishes for thermal AdS, as expected).

To compute the mean energy in the canonical ensemble, use
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The first term corresponds to the Casimir energy in the CFT (in this sense, thermal
AdS corresponds to the CFT vacuum), whereas the second term gives the spacetime
energy M(T), using the relation between M and T derived in Problem set 11.

E(B) = or—-T1% (9



(e) Inverting this relation, we obtain (for large 7" and large E where T' > T%)

1T =8 = \/7;252 (10)
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and thus,
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(f) This gives precisely the Cardy formula, which predicts the exponentially growing
density of states p(F) = e3¥) that we obtained in a previous exercise set.



2. Small and large black holes in general d

(a)

We may determine the temperature of the black hole by relating it to the horizon
radius rp, which is given by the larger root of f(r,) =0, i.e.,

l——+—==0. (12)
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Since the metric near the horizon at r ~ rj, reads

ds* = f'(rp)(r — rp)dr* + dr® +r7dQ3 |, (13)
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the temperature of the black hole is given by (recall problem set 4)
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On the other hand, the associated temperature of thermal AdS is given by the inverse
of the compactified Euclidean time direction. This difference originates from the
different topology of the solutions: for black holes, the thermal circle is contractible,
while for thermal AdS it is not.

Solving for r,(T"), we find two solutions
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and we get T' = T),;, when the discriminant is 0. We see that there is no black hole
solution when 7' < T,,;,,. Nonetheless, thermal AdS remains a solution (it satisfies
Einstein’s equations with a negative cosmological constant for every T').

The two solutions have been previously found

rE = 2r LT (1 +4/1 M) (16)
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Consider the bare gravitational action in D = d+1 dimensions in Eucliean signature
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where M is the spacetime bulk and OM is the asymptotic AdS boundary, and we
introduced A = —%. Note that since we will only consider differences in
actions, we need not renormalise the expression above.

A solution of Einstein’s equation satisfies R = D2—£)2A, and thus we can substitute

this to find
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Therefore

(D-1)
K2L?
D _ 1 T T

_ T ) avol(si1) lim ( / dr'r'™t — /0 dr’r’d_l) (19)

(D—-1) PN rd i
= 5 AVol(STT) = = 5 BVol(STT)

ASpur = — (Volgy — Volaas)

Now let us consider the relevant quantities to compute the boundary action. The
normal vector to the boundary at a distance r is n = f1/20,, the metric determinant
is /7 = f1/?r*"!, and the extrinsic curvature density is given by K = 14" L, 7, =
% 1720, f + ... where the dots indicate terms that vanish when we do the angular
integrals.

At large radii, » > L, we have
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where /v ags % and Kaqs ~ 1/L. Now we can determine the difference in

boundary actions
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where we found g from ((12)). hence the action is proportional to the volume of
spacetime. This is infinite, due to the infinite range of r, but the difference between
the volumes of two asymptotically AdS geometries is a finite quantity, which we can
compute as
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For r, < L, the difference AF of the free energies is positive, and therefore thermal
AdS is preferred. For r;, > L, the Schwarzschild black hole is preferred. For r, = L,
there is a phase transition, the Hawking—Page phase transition, with transition

temperature
1
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Small black holes have r, < L, hence their free energy is always greater than thermal
AdS, and such configurations never dominate the partition function.

THp: (d—l)

The specific heat can be related to the free energy by
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To conclude, we see that large black holes are stable, while small ones decay into
thermal AdS for T' < SW;LI and into large black holes for T" > %.
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(g) As we take L — oo, we recover the flat space limit, where Ty p = 0, hence no phase
transition occurs, and the partition function is always dominated by the black hole

d—2
solution, of which there is now a single one, with free energy F' = TQ’IHQ Vol(S9-1).
This is always positive and therefore black holes will tend to decay to the empty

flat space solution, with F' = 0.




